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Three-dimensional numerical solutions have been obtained for steady, linear shear 
flow past a fixed, heated spherical particle over a wide range of Reynolds number 
(0.1 < R < 100) and dimensionless shear rates (0.005 ,< a < 0.4). The results indicate 
that a t  a fixed shear rate, the dimensionless lift coefficient is approximately constant 
over a wide range of intermediate Reynolds numbers, and the drag coefficient also 
remains constant when normalized by the known values of drag for a sphere in 
uniform flow. At lower values of the Reynolds number, the lift and drag coefficients 
increase sharply with decreasing R ,  with the lift coefficient being directly proportional 
to  R-i. For the range of shear rates studied here, the rate of heat transfer'to the 
particle surface was found to depend only on the Reynolds number, that  is, it was 
insensitive to the shear rate. The dimensionless rate of heat transfer, the Nussel 
number Nu, was seen to increase monotonically with R. 

1. Introduction 
The transport of particles and drops plays an important role in many combusion 

processes, and as a consequence a great deal of experimental work has been done to 
study the effects of the coupling between fluid flow, heat and mass transfer and drop 
shape. An extensive review of both theoretical and experimental work is given by 
Clift, Grace & Weber (1978). All of the theoretical work done thus far on drops and 
particles at finite Reynolds numbers has been limited to the case where the outer flow 
field is assumed to be axisymmetric, thereby reducing the computational domain to 
two dimensions. Approximate solutions have been obtained for drops in the limit of 
very small deformation for either high (Moore 1959, 1963, 1965; Harper & Moore 
1968; Harper 1972) or low (Taylor & Acrivos 1964; Brignelll973) Reynolds number. 
Numerical solutions for drops and particles at finite Reynolds numbers have either 
required that the body remain spherical in shape (Masliyah 1970; Woo 1971; 
Brabston & Keller 1975 ; LeClair et al. 1972 ; Rivkind & Ryskin 1976 ; Oliver & Chung 
1987; Fornberg 1988), or deform to  shapes not too far-removed from spherical 
(Ryskin & Leal 1984a, b ;  Christov & Volkov 1985; Dandy & Leal 1989), but all have 
assumed that the flow is uniform and the domain is infinite in extent. 

A more realistic situation is for the particle or drop to be moving in the presence 
of an obstacle such as a wall, which will influence the flow field around the particle. 
For flow past a planar surface, to  leading order the flow near the wall is a simple shear 
flow, and thus any particle present in this region would experience a linear flow field, 
with the fluid velocity going to zero a t  the wall. The non-uniformity of this flow 
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results in a force imbalance on the particle surface in the direction normal to the wall, 
causing the particle to drift away from the wall. The drag (that is, the force on the 
particle in the direction of the bulk fluid motion) would also be affected by the non- 
uniform velocity distribution in the surrounding fluid. Previous investigations of 
particle migration have relied on the assumption that the Reynolds number be small, 
such that Stokes flow is the first-order approximation of the flow solution. It is 
necessary for the Reynolds number to be non-zero for any lift to occur, and 
Bretherton (1962) proved that, if the inertia terms in the equations of motion are 
neglected, no lift force can exist for a body of revolution in a unidirectional flow. 
Rubinow & Keller (1961) and Saffman (1965) both used asymptotic expansions to 
obtain inertial corrections for small but non-zero values of the Reynolds number for 
the case of a single sphere in an unbounded flow domain. Saffman (1965) considered 
the case of a solid sphere rot,ating a t  a constant angular velocity, and translating a t  
a constant velocity relative to the local undisturbed uniform shear flow. To take into 
account the effects of boundaries and to allow for the sphere to be neutrally buoyant, 
Cox & Brenner (1968) studied a three-dimensional Poiseuille flow problem using 
matched asymptotic expansions to solve for the flow-induced force and torque on the 
sphere. I n  addition to assuming that the particle and channel Reynolds numbers 
were small, Cox & Brenner (1968) also assumed that the ratio of the sphere radius to 
the tube radius was small. Their solutions could not be presented in explicit form, so 
Ho & Leal (1974) used a method very similar to Cox & Brenner’s to obtain explicit 
solutions. Ho & Leal restricted their analysis to flows between two infinite plane 
boundaries, and the two flows they considered were simple shear and Poiseuille. 
O’Neill(l968) obtained a solution for the force and torque on a sphere in contact with 
a plane boundary, under the action of a linear shear flow. Later, White et al. (1976) 
used a method similar to that of O’Neill(l968) to study grain saltation in the Martian 
atmosphere. Schonberg, Drew & Belfort (1986) used singular perturbation techniques 
to examine interactions between many spherical particles in Poiseuille flow, while 
removing the restriction that the channel Reynolds number be small but still 
maintaining a small particle Reynolds number. Schonberg & Hinch (1989) again used 
singular perturbation expansions, and relaxed the high channel Reynolds number 
condition of Schonberg et al. (1986) to examine particle migration a t  intermediate 
channel Reynolds numbers. 

As crucial as inertia is for particle migration, no analysis for particles or drops in 
shear flows a t  finite Reynolds number have been published, primarily due to the 
necessity of using numerical techniques to study the three-dimensional nature of the 
system. This flow problem is important, and is the first step in the study of the 
motion and breakup of droplets in shearing flows a t  finite Reynolds number. 
Further, it provides the opportunity to study three-dimensional flow separation, and 
its relation to surface stress and vorticity. 

The goals of this work are to study the coupling between flow type (the Reynolds 
number R and the dimensionless shear rate a), the resulting steady velocity and 
pressure fields, and heat transfer characteristics in order to quantify the relationship 
between the computed values of C,, C,, the Nusselt number Nu, and the 
characteristics of the flow, R and a. Steady solutions will be presented a t  a range of 
Reynolds numbers spanning three orders of magnitude, 0.1 6 R 6 100, and 
dimensionless shear rates covering almost two orders of magnitude, 0.005 < a < 0.4. 

To obtain numerical solutions to this problem, a spherical-type, boundary-fitted 
coordinate grid is used in the discretization of the flow domain. The grid generation 
technique was developed for construction of general, three-dimensional, boundary- 
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FIGURE 1. Schematic of the problem. The imposed flow is a linear shear flow, and is described 
by U, = (U,+ds)e, .  

fitted, non-orthogonal grids for use in free-surface problems ; in the present study the 
grid reduces to an orthogonal, spherical-type one. The full Navier-Stokes equations 
and the thermal energy equation are approximated on this grid using a recently 
developed finite-volume formulation, described below, that is capable of accurately 
resolving time-dependent, three-dimensional flows. 

2. Problem statement and numerical approach 
A cold particle of temperature Tp is held fixed in a hot fluid of temperature T,. We 

assume that the particle is spherical, with radius a, and is rigid such that it has a no- 
slip surface. The particle is constrained so that it can neither translate nor rotate. 
The undisturbed local fluid velocity (that is, the flow field in the absence of the 
particle) is a simple shear flow. It is assumed that the fluid is incompressible, and that 
the fluid properties are independent of temperature, allowing the fluid to be 
characterized by the constant parameters density p,  viscosity p, and thermal 
diffusivity K .  As shown in figure 1,  the geometry of this system is represented by the 
Cartesian coordinates (x, y ,  z ) ,  and the boundary-fitted coordinate system is 
represented by the general coordinates ( f l ,  7, <), where the fl  is radial, and 7 and 6 are 
of angular-type. Note that the origin of the frame of reference is fixed at the centre 
of the particle. The angular coordinate 7 has a value of zero a t  the outflow axis, and 
a value of unity a t  the inflow axis, while [ is zero on the high-velocity side of the 
particle (z' +x' = 1 , x  > 0, y = 0) and unity on the low-velocity side ( x 2 + z 2  = 1,  x < 
0, y = 0). The undisturbed flow is described 

U, = ( U ,  + diz) e,, 
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where U,  is the centreline velocity, and di is the dimensional shear rate. Note that 
the vorticity in the free stream, given by o = V x U, has one component, die,. 
Therefore, the magnitude of the lone component of vorticity in the undisturbed flow 
is equal to the shear rate. 

2.1. Governing equations and boundary conditions 
The equations describing the fluid motion and heat transfer are the continuity 
equation, the Navier-Stokes equations, and the thermal energy equation, written in 
integral form, and stated with respect to a frame of reference fixed a t  the centre 
of the particle. In  the present work the three equations, along with all associated 
boundary conditions, are non-dimensionalized using the radius a of the spherical 
particle as a characteristic length, the centreline velocity U ,  as a characteristic 
velocity, T, as a characteristic temperature, and pU& as the pressure scale. Note 
that, in steady head transfer problems (such as this one) where Tp is constant, it is 
the convention to define a dimensionless temperature 

so that 0 Q T Q 1. Here, however, we have chosen T = T‘/T, as the dimensionless 
temperature. The reason for this choice is simply that the numerical technique used 
in this work was developed for the more general case of the unsteady heat-up of a 
particle or drop, for which Tp does not remain constant. This convention is common 
in the heat transfer and combusion literature, and was used here to remain consistent 
with future work. The dimensionless forms of the governing equations are then 

and (3) 

where the velocity vector is u = (u,  v, w )  (corresponding to the Cartesian Coordinates 
(2, y ,  z ) ) ,  p is pressure, 7 is the viscous sress tensor, T is temperature, the Reynolds 
number is R =2paU,/p, and the Prandtl number is P =  V / K ,  where v is the 
kinematic viscosity, p / p .  Although all operators and geometric quantities in these 
equations will be evaluated using the curvilinear coordinates (6 ,  v, g ) ,  the Cartesian 
components of u will be considered in order to guarantee orthogonality of the three 
velocity components. Equations (1)-(3) are written with the time derivative outside 
of the integral sign, because the coordinate grid is invariant with time in this 
formulation. However, for a moving-boundary problem such as a deforming drop, it 
would be necessary to take into account the time-dependent nature of the coordinate 
mapping. Further, although we seek steady solutions, all three of these equations are 
written in a time-dependent form because of the specific solution algorithm used in 
this work. This point will be discussed further in 52.2. The assumption of 
incompressibility and constant properties allows the formation of dimensionless 
groups R and P in front of the viscous and diffusive terms in equations (2) and (3), 
respectively. 
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The velocity boundary condition upstream of the particle at infinity in 
dimensionless form is 

u + (1  + ax) e,, (4a) 

where' the coordinates x, y, and z have been non-dimensionalized by the particle 
radius a, the shear rate has been non-dimensionalized by U J a ,  and the fluid 
temperature is non-dimensionalized to unity. Note that the undisturbed fluid 
velocity goes to zero a t  a distance x = -a from the particle centre (the length L in 
figure 1 ) .  At the particle surface the velocity must be zero: 

u = 0. (4b)  

The particle is assumed to be isothermal. For the purposes of this work, the 
dimensionless particle temperature, (Tp/Tm), is taken as 0.1, since this value is 
representative of a cold particle introduced into a hot combusion environment. 

The computational domain for this problem is described by the general curvilinear 
coordinates E, 7, and 6 with the conditions (4a, b)  applied at the boundaries of these 
coordinates as follows. The surface of the particle corresponds to 5 = 0, while the 
boundary a t  infinity corresponds to 6 = 1. The calculations presented in this pa er 
were performed on a mesh having an outer boundary located at  L^ = [x2 + y2 + z2]3 = 
25 radii. The boundary conditions a t  = 0 are then u = 0 and T = 0.1. Application 
of the boundary conditions a t  E = 1 is more complicated, and will be discussed below. 
The outflow axis (positive z-axis) corresponds to 7 = 0, and the upstream axis 
(negative z-axis) corresponds to 7 = 1 .  These are both symmetry axes for this 
problem, and as such, no-flux boundary conditions can be imposed on all dependent 
variables. That is, &/a7 = aT/ay = 0 at 7 = 0, 1 .  The (z, 2)-plane is a symmetry 
plane (owing to particle symmetry), and therefore it is only necessary to solve the 
governing equations in a half-space on one side of this plane. (This will be discussed 
further in $3.1 .) As a consequence, the final coordinate variable 5 is applied over half 
of the total domain, and as such, symmetry conditions can be applied a t  the 
boundaries of 5. These conditions are then au/a[ = aT/a[ = 0. For the more general 
case of a non-planar-symmetric particle it is necessary to start and end 6 at  the same 
location, so that the particle is completely circumscribed by the coordinate mesh; the 
algorithm used here has been developed to handle either situation. 

Since the outer boundary of the domain ( E  = 1) is located a t  a finite distance from 
the particle surface, i t  is not correct to impose the far-field conditions on velocity and 
temperature a t  every point on this boundary, particularly downstream of the 
particle in the region where 7 is small. Therefore, the boundary conditions a t  5 = 1 are 
applied in two different ways: for 7 2 0.5 (the midpoint), the upstream conditions on 
velocity and temperature are imposed, while for 7 < 0.5 it is assumed that the 
variables are invariant with respect to z ,  that is, the velocity field and the isotherms 
are approximately parallel to the z-direction. This assumption is valid over a wide 
range of Reynolds numbers, breaking down only in the limit of very small values of 
R(R < 1) .  Further, the volume of the particle is only 0.0064% of the volume of the 
computational domain, and any disturbances in the flow field caused by the presence 
of the particle will be extremely weak when they have propagated to the outer 
boundary. 

Once the steady velocity, pressure, and temperature fields have been calculated for 
specified values of R, a, and P ,  it is desirable to compute the forces on the particle 
and the rate of heat transfer to the particle surface. The drag and lift are the 

P 
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components of the fluid force on the particle surface in the z- and x-directions, 
respectively, and in dimensional form, are defined by 

where n is the outward-pointing unit normal vector a t  the particle surface, and r is 
the viscous stress tensor. The non-dimensional drag and lift are then 

The lift coefficient CL would be zero for the case of uniform streaming flow, and the 
fact that it will assume non-zero values here demonstrates the force imparted to the 
particle due to the presence of a zero velocity point, for example, a wall. 

The rate of heat transfer to the particle surface is computed by integrating the heat 
flux over the surface of the sphere (using dimensional quantities) : 

& = -  q.ndA SI, 

where k is the thermal conductivity of the surrounding fluid. The rate of heat transfer 
can also be expressed as Q = h(47ra2)(TD-TT,), where h is the film heat transfer 
coefficient. The Nusselt number Nu is then defined as 

The Nusselt number is the dimensionless rate of heat transfer, and can be viewed as 
the average temperature gradient in the fluid, evaluated over the heat transfer 
surface (that is, the particle surface). 

2.2 Method of solution 
To obtain solutions for u( [ ,  7, 5), p(6 ,  7, 5) and T([, 7, 5) in the domain 0 < [, 7, 5 < 1, 
the governing equations, are approximated at discrete points in the domain, and 
the resulting coupled set of algebraic equations is solved for the dependent variables. 
The three coordinate directions 6,  7 and y are divided into Mt,  M7, and Mc points, 
respectively, and the equations are then evaluated a t  each of these M,  x M ,  x Mc 
points. Figure 2 ( a )  shows a typical volume element resulting from the spatial 
discretization of the domain. The index i denotes the 5-direction, j denotes the q- 
direction, and k denotes the [-direction. The sides of the rectangular volume element 
are located at  the approximate midpoints between the node ( i jk )  and its six nearest 
neighbours. 

The volume integrals in (2) and (3) are computed in each cell by evaluating each 
integrand a t  the cell centre, that is, a t  the node ( i j k ) ,  and multiplying by the volume 
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FIQURE 2. Representative volume elements arising from discretization of the computational 
domain; (a )  rectangular volume element centred at  the node ( i j k ) ,  and ( b )  triangular volume 
element centred a t  the node ( i2k ) .  

of the element. The base vectors in the curvilinear coordinate system are used to 

where the three base vectors are evaluated a t  the point ( i j k ) .  To compute the 
differential operators appearing in the governing equations, i t  is only necessary to 
evaluate geometric quantities of the volume element : For example, the three 
components of the gradient operator in the second term of (2) are 

where K j k  is computed in (9). 
The surface integrals are computed in a similar manner, except that they must be 

evaluated on all six faces for each rectangular cell. All surface integrands are 
computed at the midpoint of each face, multiplied by the area of that face, and then 
summed with the contributions from the other faces. Linear interpolation is used to 
evaluate the variables, operators, and geometric properties on each face. 

Owing to the nature of the curvilinear coordinate system, the boundaries 7 = 0 and 
7 = 1 are lines rather than surfaces. Because of this feature, the volume elements 
adjacent t o  the lines 7 = 0, 1 for all [ and 5 are triangular in shape. (These elements 
can be thought of as six-sided, with one of the surfaces having zero area.) Therefore, 
the approximations to (2) and (3) a t  the nodes ( i2k )  and (iM,-lk), 1 < i < Mc, 1 < 
k < Nc must use a five-sided volume element (shown in figure 2 b ) .  The surface and 
volume integrals are computed in a manner analogous to those for the six-sided 
elements. 

From the approximations of the four governing equations arising from (2) and (3) 
a t  each of the ( M g - 2 )  x (M,,-2) x (A?,- 2) interior volume elements, and the addition 
of the equations arising from application of the boundary conditions a t  the 
remaining boundary elements, a set of 4 x M E  x M ,  x M ,  equations and 
5 x M5 x M,  x M ,  unknowns is obtained, in which the additional set of unknowns is 
the pressure field p .  Because the problem is underdetermined, the equations must be 
solved in an iterative manner, using the continuity equation, ( I ) ,  as the additional 
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constraint on the system. The iteration algorithm is described in detail elsewhere 
(Dwyer 1989), and here i t  will suffice to  state that  in the algorithm the pressure is 
held fixed while the velocity and temperature fields are computed using (2) and (3), 
and then the pressure is computed using the continuity equation and the current 
approximation to the velocity field. This successive approximation algorithm is 
repeated until convergence. This pressure correction algorithm is closely related to 
the artificial compressibility method of Chorin (1967, 1968). 

For fixed values of the pressure, the velocity and temperature fields are computed 
iteratively using a predictor/corrector updating method analogous to the Alternating 
Direction Implicit (ADI) scheme of Peacemann & Rachford (1955). The three 
velocity components and the temperature are iterated in uncoupled form using the 
predictor/corre,ctor scheme ; the nonlinear terms appearing in (2) are treated 
explicitly, thereby reducing the algebraic equations to a linear form. 

In  the results presented below, the number of nodes used is Ms = 55, M,? = 41, and 
Mc = 31. This discretization yields a total of 69905 nodes in the domain. There are 
five unknowns at each node (u, p ,  T), for a total of almost 350000 unknowns. Fifty- 
five nodes are used in the 5-direction because the domain extends 25 radii from the 
particle centre. A skewing factor in the grid generation scheme provides a high 
density of nodes near the particle surface (6  = 0 ) ,  with the internode spacing 
increasing with 5;  the skewing factor is simply = l.l(&-Ei-l). The nodes in 
the q- and 5-directions are evenly spaced ; more nodes are used for q than 5 because 
gradients are expected to be higher in the q-direction. To save computer time during 
a run, metric quantities were computed once and then stored for the duration of the 
run. The penalty in doing this is the necessity of having a large memory available, 
but the computations were performed on a CRAY-2, so memory was not a 
consideration. 

All calculations were started with a dimensionless time step of At = 0.001, and At 
was gradually increased to 0(10-') by the end of a simulation. Normally, 200-300 
time steps were required to reach a steady-state solution. Each time step took about 
15cpus on a CRAY-2. The exact cpu requirements depended on the number of 
pressure correction interations done a t  each time step. Calculations were terminated 
when 

max I&jk 1 d 
i J ,  k 

where jjvk is the residual of the pressure correction at  the node (ijjk), and when (1) was 
satisfied in all elements to within 1 part in lo5. The drag, lift, and heat flux were 
computed a t  each time step, and a run was not halted until the values changed by 
less than one part in lo6 per time step. 

3. Results and discussion 
Calculations were performed for Reynolds numbers in the range 0.1 < R < 100 and 

values of the shear rate in the range 0.005 < a < 0.4. This range of Reynolds 
numbers was chosen as characteristic of the values of R that a small fuel drop or coal 
particle would experience during combusion ; fuel droplets typically enter a 
combusion chamber with Reynolds numbers of 0(102), and as they decrease in 
diameter and velocity during the process of burning, R continuously decreases, 
reaching values of less than unity. The shear rate a = 0.4 was chosen as an upper 
bound for the calculations because it yields a change in velocity of more than 100 YO 
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from the low-velocity side (x = - 1) to the high-velocity side of the particle (x = 1) .  
In dimensional terms, if we assume that we have a 100-pm particle in air, centreline 
velocities presented here range from approximately 1.5 cm/s to 1700 cm/s, and shear 
rates range from 0.5 s-l to 67000 s-l. Runs were not performed below a = 0.005, 
because the flow structure was nearly axisymmetric a t  this small rate of shear. 
Further, the magnitude of the lift force on the particle a t  this shear rate is 
comparable to the discretization error. Thus, while results for drag and heat transfer 
are reliable at low shear rates, those for lift cannot be considered accurate for 
a < 0.005. 

To study the heat transfer characteristics of these shear flows a t  various values of 
R and 01 decoupled from the physical properties of the fluid surrounding the particle, 
all of the runs were carried out a t  P = 1, that is, the kinematic viscosity is set equal 
to the thermal diffusivity of the fluid, and this value for P is reasonable for many 
gases. (The Prandtl number for many gases lies in the range 0.6 < P < 0.85.) 

3.1. Accuracy 
The results and conclusions presented below rely on the accuracy of the numerical 
calculations. It is especially important to verify the accuracy of the results since the 
numerical technique used here is new, and has never before been tested on three- 
dimensional problems. 

The scheme employed here to approximate gradients is analogous to centred 
differencing in a finite-difference scheme, and it has been documented that unphysical 
oscillatory behaviour can occur in regions where convection dominates diffusion, 
when second-order, centred differencing is used for the convective terms (Roache 
1972, pp. 161-165). While this phenomenon is more common at Reynolds numbers 
on the order of several hundred, it has been observed that the pressure field is 
sensitive to the type of difference operator employed, even a t  modest values of the 
Reynolds number. To investigate the effect of cell Reynolds number on the flow 
solutions, we performed calculations at R = 70, a = 0.2 for three different grid 
densities: (M6,M,,Mc) = (21, 21, 21), (41, 31, 21), and (55, 41, 31). A steady solution 
could not be computed on the coarsest grid, regardless of the initial guess. We believe 
that the (21, 21, 21) grid cannot adequately resolve gradients in the streamwise and 
radial directions, and as a result the pressure near the body oscillates in time with 
growing amplitude. A similar situation was encountered using the second grid, (41, 
31,21), but when extreme under-relaxation was used in the pressure correction 
algorithm, the solution did converge. Although the solutions for drag, lift, and heat 
transfer on this grid matched the solutions on the (55,41, 31) grid to within several 
percent, the relative instability of the run led us to use the finer mesh for all 
calculations. For all cases considered, solutions computed on the (55, 41, 31) mesh 
were stable and smooth. 

Four tests were done to examine the sensitivity of the solution to the position of 
the outer boundary. Using the same values of R and a as above, and the (55, 41,31) 
grid, we computed solutions for L^ = 10, 15,20, and 25 radii. The scheme converged 
smoothly for all four cases, and while values for drag and heat transfer were self- 
consistent (to within 1 YO) for all cases, the lift on the sphere varied dramatically for 
different values of L̂ . For L^ = 10, 15 the force on the particle in the transverse 
direction was actually opposite in sign to what was expected, with the magnitude 
being largest for L^ = 10. Manipulating the grid spacing in the radial direction had 
little effect on the values of lift for these two cases. However, the transverse forces 
on the sphere for L^ = 20 and 25 were in the (assumed) correct direction, and agreed 
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with one another to within 2 %. To minimize the effect of the outer boundary on the 
flow solution, the value of L  ̂ = 25 was used in all subsequent calculations. 

It was stated in $2.1 that, while the code was capable of treating an arbitrarily 
shaped body, i t  was advantageous to  take advantage of the geometrical symmetry 
of the problem ; the (x, 2)-plane is a symmetry plane, and the computational space 
can be reduced to a half-space, or in this case, a half-sphere. Although all of the 
results presented here were computed in the half-space, two solutions were computed 
using the full space in order to  test the implementation of the periodic boundary 
conditions for <, and more importantly, to ensure that the (x, 2)-plane was indeed a 
symmetry plane for the flow. The two cases considered were computed on a (55, 41, 
51) grid, a t  a shear rate a = 0.2 and Reynolds numbers of 1 and 100. This grid was 
17 Yo coarser in the <-direction than the half-plane grid, and discretization was done 
in a manner such that for each point located a t  (x, y, z )  there was a corresponding 
point located a t  (2, -y, 2 ) .  Thus, symmetry could be tested by evaluating 

I . k  y, 41 - 1.h -y, dl 
I f ( % ,  Y, 41 

at  steady-state for every point in the domain a t  which f was non-zero, and for all 
values off = u, v, w, p ,  T. For both of the cases examined, this expression always 
yielded values that were o( at all points evaluated in the computational space, 
indicating that there were no asymmetries present in the steady solutions. The issue 
of time-dependent, non-symmetric flow behaviour cannot be resolved in the steady- 
state work done here, but future sixdies on transient flows will have to use the full 
space to allow for such asymmetry. 

Inorder to compare our results with accepted results in the literature, we can only 
look a t  two limiting cases owing to the fully three-dimensional nature of the flow 
problem. The first of these cases is the limit of small Reynolds number. Saffman 
(1965) used matched asymptotic expansions to solve for the lift on a sphere to O(R$. 
Saffman assumed that a rigid sphere of radius a translated through a very viscous 
fluid at  a velocity of magnitude Urn relative to the velocity of the undisturbed flow 
passing through the centreline of the sphere, while rotating a t  an angular speed 0. 
The local undisturbed flow field was a simple shear flow, with a shear rate 6.  
Saffman’s analysis relied on the assumption that three Reynolds numbers defined 
using U,, 0, and oi: were all small compared with unity. He found that the 
dimensional lift on the particle was given by 

(11) 

Note that to leading order the lift on the particle is independent of its rate of 
rotation. Non-dimensionalizing ( l l ) ,  we arrive a t  a form for the lift coefficient in 
terms of the dimensionless parameters of this problem. : 

F, = 6.46 p U ,  a2d/v:  + o(R;). 

C, = 5.82ai/Ri, (12) 

where we have again used U,/a to define a non-dimensional shear rate a. To compare 
the results obtained in this work against the solution of Saffman (1965) shown in (12), 
the case R = 0.1 was considered for six values of a: 0.01,0.025,0.05,0.1,0.2, and 0.4. 
When C ,  is plotted against (a/R)i, the relationship should be linear, and this is 
confirmed in figure 3. The dashed line is the analytical solution of Saffman (1965) and 
the symbols are the results from this work. The agreement is excellent, except at the 
smallest value of a, and the explanation for this behaviour has been given above. The 
agreement between our numerical calculations and (12) is encouraging because we 
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FIGURE 3. Values of the lift coefficient taken from the asymptotic analysis of Saffman (1965) 
(the dashed line) and results of the present work (the symbols) at R = 0.1. 

have found in this work that the lift force is a sensitive indicator of any errors in the 
solution, and further, we expect the outer boundary to exert its greatest effect a t  low 
Reynolds numbers owing to the dominance of diffusive forces over inertial forces. 

The second limiting case against which we can compare our results is a = 0, or, 
uniform flow. Here, the flow is axisymmetric and numerous examples exist in the 
literature for the case of a sphere in steady, uniform flow (cf. Clift et al. 1978). 
Although it is computationally expensive to compute two-dimensional flow fields 
using a three-dimensional formulation, it is nevertheless a viable means of checking 
the accuracy of the method. For this purpose, results were obtained a t  a = 0 for 
Reynolds numbers of 10 and 100, and compared with the axsymmetric numerical 
results of Woo (1971). Figure 4 ( b )  shows the surface distribution of pressure 
computed in this work, and figure 4(a)  displays the results of Woo (taken from Clift 
et al. 1978). The curves in figure 416) represent the pressure distributions along the 
surface line (q ,  5) = (q ,  0.5), but solutions at all lines of constant [on the surface yield 
the same results. To verify that the numerical results obtained in this work for a = 
0 are actually axisymmetric, surface contours for heat flux, pressure drag 
contribution, and viscous drag contribution have been plotted, and two cases, 
corresponding to R = 10 and R = 100, are represented in figures 5 (a)  and 5 ( b ) .  The 
pressure drag and viscous drag contours in figure 5 reflect contributions to the first 
and second terms, respectively, in the expression for FD shown in (5). These contours 
demonstrate the distribution of forces on the particle surface, and should not be 
confused with contours of pressure and viscous stress. I n  figure 5 ,  the sphere is being 
viewed from the side, in the direction normal to the plane of the shear flow, and the 
flow is left to right. The contours of the z-components of the force, as well as the heat 
flux, are axisymmetric in character, i.e. the values are independent of 6. Incidentally, 
the x-components of force are antisymmetric about the line g = 0.5, and the 
numerical result for the total lift force is less than 

Finally, properties of the recirculating wake, such as separation angle and wake 
length, can be computed for the a = 0 case and compared against published results 
for uniform flow. In  our calculations, the location of the separation point was 
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FIQURE 4. Surface distribution of pressure: (a)  solution computed by Woo (1971) using a 
stream function-vorticity formulation ; (b )  solution computed in this work a t  a = 0. 

determined by finding the point on the sphere surface where the shear stress changes 
sign. (For the axisymmetric case, there is only one component of the surface shear. 
This will be discussed in more detail later.) The length of the wake was measured by 
plotting the velocity field in the symmetry plane. Table I shows the results for 
separation angle and dimensionless wake length (wake length/sphere diameter) for 
several values of R, compared against equation 5-10 and figure 5.7, respectively, of 
Clift et al. (1978). The results from Clift et al. have been compiled from numerous 
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(ii) (iii) 

FIQURE 5. Surface contours for (i) the heat flux, (ii) the z-component of the pressure force, and 
(iii) the z-component of the viscous force, for OL = 0: (a )  R = 10; ( b )  R = 100. 

Separation angle 

R Present work Clift et al. 

30 152.2 152.5 
50 139.1 139.3 
70 132.5 132.6 
90 128.3 128.2 

100 126.7 126.5 

Dimensionless wake length 

Present work Clift i t  al. 

0.17 0.18 
0.49 0.49 
0.66 0.67 
0.81 0.82 
0.88 0.89 

TABLE 1 .  Values of separation angle measured from the front stagnation point and dimensionless 
wake length (wake length/sphere diameter), from Clift et al. (1978) and from numerical results of 
the present work for the case a = 0 

experimental and theoretical studies. The agreement is excellent for all Reynolds 
numbers considered. 

3.2. Li f t  
It is instructive when examining the lift on the particle to look not only at  the total 
lift force, but also at the two contributions to lift - the pressure contribution and the 
viscous contribution. (See ( 5 ) . )  These contributions are plotted as a function of R ,  
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FIGURE 6. The pressure (A) and viscous (m) contributions to the dimensional lift force on a 
spherical particle as a function of Reynolds number for the shear rate a = 0.1. 

FIGURE 7 .  Surface contours for R = 2 and a = 0.1 ; (a) 2-component of the pressure; (b )  total 
lift force on the particle (viscous contribution + pressure contribution). 

and for a = 0.1, in figure 6. It can be seen from this figure that, while the total lift 
is positive-that is, away from the point of zero velocity-for all values ofR, the two 
portions show dramatically different behaviour for different values of the Reynolds 
number. (All results in figure 6 are for a = 0.1.) The viscous contribution is positive 
and monotonically increasing for all values of Reynolds numbers in the range 0.1 < 
R < 100, and the dependence of this value upon R is nearly linear at the highest 
values of R, In contrast, the pressure contribution is positive for R < 10, but falls 
below zero and reaches a minimum at R x 60. This minimum corresponds to a 
maximum in downward (i.e. towards the zero velocity direction) force due to 
pressure. For R > 60, up to the highest value of R used here, the pressure 
contribution monotonically increases. 

To understand the behaviour of the pressure contribution, it is necessary to 
examine the surface distribution of forces on the particle. Plots ( a )  and ( b )  in figures 
7,s and 9 present the surface contours for the x-component - the vertical component 
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FIGURE 8. Surface contours for R = 60 and a = 0.1 : (a) s-component of the pressure ; ( b )  total 
lift force on the particle (viscous contribution +pressure contribution). 

in the figures-of the pressure lift contribution (the surface distribution of the 
contribution from the first term in the expression for F,) and the total lift (pressure 
contribution plus viscous contribution), respectively ; the three figures correspond to 
Reynolds numbers of 2, 60, and 100, and a = 0.1. For R = 2, the flow is nearly 
fore-aft symmetric, and this is reflected in the rough symmetry in the contours about 
the midpoint of the particle, 7 = 0.5. The upward pressure exerted on the particle for 
6 < 0.5 as the flow accelerates to the midpoint (7 = 0.5) offsets the downward force 
as the fluid decelerates for 7 < 0.5. Note that the centre of the particle, 5 = 0.5, must 
be a zero contour for the x pressure component, because the surface is tangent to the 
x-direction on this line. 

At R = 60, figure 8, the flow field is not drastically asymmetric about the line 5 = 
0.5, because the difference in velocities between the top and bottom of the particle 
is only 20%. However, the flow no longer possesses any fore-aft symmetry. It is 
known (Clift et al. 1978) that, for uniform flow at R = 60, a closed streamline wake 
exists on the downstream side of the particle. The presence of this eddy shifts the 
contours towards the front of the body, and the flow begins to decelerate at a point 
forward of 7 = 0.5. The small region of acceleration and extensive region of 
deceleration produce a net force on the particle in the downward direction. The flow 
field will be discussed further in $3.5. 

The contours for R = 100 are plotted in figure 9. Again, because of the asymmetry 
of the flow due to the presence of an attached wake, the contours are shifted forward 
on the particle surface. It can also be seen from figures 7 ( a )  and 8 ( a )  that the 
contours do not approach the outflow axis 7 = 0 for the R = 100 case as they do for 
the R = 60 case. The reason for this difference is that the recirculating wake is larger 
for R = 100 than for R = 60, and the point of separation (which depends on 5) occurs 
a t  larger 7 for R = 100 than for the lower Reynolds number. The absence of contour 
lines in the wake region indicates the weakness of the flow in each eddy. 

Although the dimensional lift force increases monotonically with increasing R,  the 
dimensionless lift force, C, shows different behaviour. Figure 10 indicates the values 
of C ,  corresponding to the lift forces plotted in figure 6. Not shown is the value a t  
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FIGURE 9. Surface contours for R = 100 and a = 0.1 : (a) z-component of the pressure; (6) total 
lift force on the particle (viscous contribution + pressure contribution). 
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FIGURE 10. Lift coefficient C, as a function of R for a = 0.1 

R = 0.1, which is C ,  = 5.72. The graph in figure 10 can be separated into two regions : 
in the first, for R < 40, the lift coefficient increases sharply with decreasing R,  and in 
the second, for R > 40, C,  is essentially independent of the Reynolds number. As 
demonstrated in figure 3, when the Reynolds number is small enough to apply 
Saffman's (1965) analysis, the dimensionless lift on the particle increases as R-5 for 
fixed a. The invariance of C, with R for R > 40 demonstrates the relative efficiency 
of lift forces a t  modest Reynolds numbers. I n  other words, increases in the inertia of 
the flow (pl7:) are accompanied by a linear increase in the amount of lift imparted 
to the particle, whereas a t  lower values of R, where viscous effects dominate, the lift 
coefficient is roughly proportional to the inverse of the square root of the Reynolds 
number ; thus, the dimensional lift is proportional to U i .  Quite similar qualitative 
behaviour is observed for the cases a = 0.2 and a = 0.4, but the value of the 
Reynolds number where C, levels off increases slightly with a. 

To examine the effect of the shear rate a on the lift a t  moderate Reynolds numbers, 
a calculation was done a t  R = 40. Figure 11 ( a )  presents the lift coefficient a t  R = 40 
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FIGURE 11. (a) Lift coefficient C, as functions of a for R = 40. ( b )  Dimensional pressure (A) and 
viscous (m) contributions to  the lift force as a function of a for R = 40. 

for six values of a: 0.005, 0.025, 0.05, 0.1, 0.2, and 0.4. The dashed line has been 
added to demonstrate the linear proportionality between C, and a. The fact that 
C, cc a at  an intermediate value of R is somewhat surprising since C, a ai at  very 
small values of R. The pressure and viscous contributions of the dimensional lift force 
for these six values of a are plotted in figure 11 ( 6 ) .  Both of the force terms double in 
magnitude as a doubles, but the pressure portion is negative. Since both double in 
magnitude as 01 doubles for this value of R, the relative contributions of viscous lift 
and pressure lift remain constant. 

3.3. Drag 
The drag coefficients C ,  for a = 0.1,0.2, and 0.4, and Reynolds numbers in the range 
1 < R < 100 are plotted in figure 12. Here, the square symbols correspond to the 
solutions for a = 0.1, the triangles to a = 0.2, and the circles to a = 0.4. These values 
for the drag coefficient closely parallel the behaviour of drag for steady uniform flow 
past a spherical particle (a = 0 ) ,  as plotted in figure 13 for a = 0.1. In figure 13 the 
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FIQURE 13. The ratio of drag coefficients computed in this work (a  = 0.1) to  drag coefficients 
computed using the correlations of Clift et al. (1978) for uniform flow. 

numerical solutions computed in this work for a = 0.1 have been normalized using 
the drag correlations for steady uniform flow found in Clift et al. (1978). For Reynolds 
numbers above 20, C,(a = 0.1) z 0.98CD(a = 0) ,  with this proportionality valid up 
to the highest values of R studied. For the a = 0.2 case, the proportionality is 0.99, 
and for a = 0.4 it is nearly unity. It is interesting to note that, for a fixed shear rate, 
the z-component of the force on the particle is a constant fraction of the force the 
particle undergoes in uniform flow, and is independent of the Reynolds number. The 
explanation for this behaviour is that for fixed a the difference in velocity between 
the bottom and the top of the particle is constant relative to the midpoint velocity. 
This constant relative velocity change across the particle yields a pseudo-mean 
velocity which is a constant fraction of the centreline velocity. 

The surface contours of the two contributions to drag are presented in plots (a) and 
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FIGURE 14. Surface contours for R = 2 and a = 0.1 : (a) z-component of the pressure; 
( b )  z-component of the viscous stress. 

FIGURE 15. Surface contours for R = 60 and a = 0 :  (a) z-component of the pressure; 
(b )  z-component of the viscous stress. 

( b )  of figures 14-16 for a = 0.1 and Reynolds numbers of 2, 60 and 100. As with the 
x-components of force, the contours in figure 14 for R = 2 are nearly symmetric 
about the line q = 0.5. The viscous contribution reaches a maximum at the top of the 
particle ([ = 0) ,  in the region of highest velocities, where the surface is tangent to the 
z-direction. The pressure force goes to zero on the line q = 0.5, since the surface is 
everywhere tangent to the z-direction on this line. 

Figures 15 ( a )  and 15 ( b )  show that the force contours are shifted forward slightly 
owing to  the asymmetry of the flow around the particle and the presence of a 
recirculating wake, but this asymmetry is not too extreme at this value of R. The 
maximum in the viscous contribution lies near (q, [) = (0.5, 0) ,  since the velocity 
maximum is not too far forward of this point, and the surface is nearly parallel to the 
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FIQURE 16. Surface contours for R = 100 and a = 0.1: (a )  z-component of the pressure: 
( b )  z-component of the viscous stress. 
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FIGURE 17. The ratio of lift to drag (CJC,) its a function of R at a = 0.1. 

z-direction. Owing to the geometry of the system the pressure must be distributed 
about the line tj  = 0.5, and as a consequence the concentration of contours becomes 
noticeably higher in the front than the back. 

At a Reynolds number of 100 (figure 16), the pressure contours are a t  a 
significantly higher density in the front than in the back, owing in large part to the 
large stagnation pressure at  the front of the particle, and the existence of separated 
flow at  the rear of the body. The location of the largest viscous contribution is shifted 
slightly more forward than for the R = 60 case. This invarience is typical for 
intermediate Reynolds number flows: once modest values of R are reached and 
inertial effects become important, the shape (or, distribution) of the flow field on the 
upstream side of the particle is rather insensitive to changes in R, whereas the 
structure of the flow field on the downstream side can change dramatically. 
Therefore, the position and structure of the contour distribution for 7 > 0.5 (the 
upstream side) should not be strongly dependent on the value of the Reynolds 
number. 
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The relative magnitudes of lift and drag are plotted in figure 17 for a fixed value 
of a = 0.1. At lower values of the Reynolds number, particularly for R < 10, the lift- 
to-drag ratio increases sharply as R decreases, but the magnitude of the ratio is still 
small at  this shear rate. The ratio CJC, decreases monotonically up to R z 50, 
which, not coincidentally, is near the point where the pressure contribution to the lift 
force reaches a minimum. Above this Reynolds number, the pressure portion of the 
lift force increases, and the lift-to-drag ratio also increases monotonically up to the 
highest value of R. 

3.4. Heat transfer 
Theoretical studies of the relationship between the Nusselt or Sherwood number and 
the PBclet number for spheres date back to the work of Acrivos & Taylor (1962), who 
used Stokes solution for the velocity field around a sphere in a matched asymptotic 
solution of the thermal energy equation. This work was extended by Rimmer (1968) 
using the velocity field due to Proudman & Pearson (1957) to account for small but 
non-zero values of R. 

These results apply only in the limit of small Reynolds number, and other 
researchers, employing experimental or numerical techniques, have examined 
correlations for heat and mass transfer at intermediate values of R. Ranz & Marshall 
(1952 a, b )  proposed the following correlation : 

NU = 2 +0.60Ri@. 

Later, Beard & Pruppacher (1971) performed a series of wind-tunnel experiments to 
study the rate of evaporation of water drops. Woo & Hamielec (1971), in conjunction 
with the experiments of Beard & Pruppacher (1971), carried out a series of numerical 
calculations to theoretically predict the same phenomena. The heat transfer 
analogue of the correlation presented by Beard & Pruppacher is 

NU = 1.56+0.616Ri@, 

and the numerical results of Woo & Hamielec (1971) agree with this correlation 
( f 2 %) over the entire range of R considered. Beard & Pruppacher’s result converges 
to the theoretical predictions of Acrivos & Taylor (1962) for small Reynolds numbers. 
However, the correlation of Ranz & Marshall consistently predicts higher rates of 
heat transfer than does that due to Beard & Pruppacher, and the difference is 16% 
at the smallest values of R considered. Beard & Pruppacher attribute the discrepancy 
between their correlation and the Ranz & Marshall correlation to a number of 
experimental defects in the Ranz & Marshall study. 

Another correlation of Nu is due to Whitaker (1972), who found that the best fit 
of experimental data was 

Nu = 2 + (0.aRt + 0.06Rt) 

The two different Reynolds-number dependencies are intended to take into account 
differences in the magnitude in heat transfer between a forward boundary-layer 
region and a rear wake region. Sayegh & Gauvin (1979) used numerical techniques 
to predict that for constant fluid properties 

NU = 2 + 0.473R0*552Pm, 

where m = 0.78/R0.145. Sayegh & Gauvin found that their result agreed closely 
with that of Beard & Pruppacher (1971), but the correlation of Ranz & Marshall 
(1952a, b)  consistently over-predicted Nu at low Reynolds numbers. However, the 
correlations of Ranz & Marshall and Sayegh & Gauvin converge as R +  100. The 
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FIGURE 18. The dimensionless rate of heat transfer, Nu, as a function of a for R = 1 (0) and 
R = 40 (A). 

result of Whitaker (1972) is fairly close to that of Sayegh & Gauvin for R < 10, but 
above this value the two correlations diverge. 

To examine the effect of suction or injection on the heat transfer rate to a sphere, 
Chuchottaworn (1984) performed a numerical study for a wide range of Reynolds 
numbers and blowing rates. Chuchottaworn found that in the absence of suction or 
injection, 

Nu = 2 +0.37R0.61P0.51. 

For the range of values of the parameter a studied here (0.005 < a < 0.4), it was 
found that, while the rate of heat transfer to the particle surface increased 
monotonically with increasing Reynolds number, the heat transfer rate was 
relatively insensitive to the value of a at fixed R,  as demonstrated in figure 18. The 
dimensionless rate of heat transfer, Nu (see (8)), is plotted as a function of a for two 
different Reynolds numbers, R = 1 and R = 40. As expected, the rate of heat transfer 
is higher for R = 40 than for R = 1, but, surprisingly, Nu is essentially independent 
of a. These results indicate that although the surface distribution of heat flux 
changes with a, in an integral sense the average temperature gradient at  the particle 
surface depends only on the Reynolds number, that is, on the value of the centreline 
velocity U,. It was found a t  other values of R(R = 2, 10, and 100) that Nu(a = 0) = 
Nu(a = 0.11, and the values of Nu a t  a = 0.4 only deviate from the values at  a = 0 
by 2% at most. 

Since the Nusselt number is independent of a in the results found here, a 
comparison is made between the numerical results obtained for Nu in this work with 
those computed using the correlations valid for uniform flow past a spherical 
particle, listed above. The Nusselt number Nu is plotted as a function of R, (for P = 
1) in figure 19. The closed symbols denote the results from this work, and the curves 
are from the correlations of Ranz & Marshall (1952a, b) ,  Beard & Pruppacher (1971), 
Whitaker (1972) and Sayegh & Gauvin (1979). Over the range of Reynolds numbers 
studied in this work (0.1 < R < loo), we find that our results for heat transfer are in 
closest agreement with the correlation of Whitaker (1972). The Ranz & Marshall 
correlation predicts larger values of Nu than do our numerical results for all R 



N u  

403 

0 10 20 30 40 50 60 70 80 90 100 
R 

FIGURE 19. The dimensionless rate of heat transfer, Nu as a function of R for values computed in 
this work (symbols) and using the correlations of Ranz & Marshall (1952a, b) (-); Beard & 
Prupacher (1971) ( - - - ) ;  Whitaker (1972) (......), Sayegh & Gauvin (1979) ( - - - - ) .  

considered, as does the correlation of Sayegh & Gauvin. Our results are very close to 
the predictions of Beard and Pruppacher for R < 40, but for larger values of R their 
correlation yields higher heat transfer rates. 

3.5. The flow jield 

For a spherical particle in uniform flow - corresponding to u = 0 here -it is recognized 
that a t  a Reynolds number of approximately 20 flow separation occurs a t  a line on 
the sphere surface forward of the rear stagnation point (Rimon & Cheng 1969; 
Taneda 1956). Since the flow is axisymmetric, the separation line inscribes a circular 
arc, that is, the point of separation on the surface is independent of the azimuthal 
position. Further, it is generally agreed that flow separates a t ,  or very near, the point 
where the streamwise component of the surface shear vanishes (Brown & Stewartson 
1969 ; Williams 1977), or equivalently, the point where the surface vorticity changes 
sign. Thus, in two-dimensional and axisymmetric flows, one looks for flow separation 
by examining the magnitude of surface shear or vorticity. However, for a fully 
developed three-dimensional flow, there are two orthogonal components of the 
surface shear stress, and if we extrapolate from the condition for two-dimensional 
flow separation, then in order for flow separation to occur in three dimensions, both 
components of the surface shear must simultaneously vanish. However, i t  is not 
reasonable to assume that this criterion will be met, except a t  isolated points on the 
body surface and, as will be shown below, three-dimensional flow separation does 
indeed exist without having both components of the shear stress vanish. 

A detailed examination of three-dimensional flow separation, and the relationships 
between separation and surface shear stress will be presented elsewhere ; here we shall 
present a single case in order to elucidate the curious nature of three-dimensional 
separation. Consider the case R = 70. As mentioned above, a t  this value ofR a closed- 
streamline wake will exist behind the sphere for uniform flow, u = 0. To examine the 
effect of the three-dimensional nature of the shear flow studied here on separation, 
we look at the flow field, components of the surface shear stress, and surface pressure, 
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FIGURE 20(a). For caption see page 406. 

for a = 0, 0.2, and 0.4. In figure 20(a%) we have plotted the velocity field in the 
symmetry plane as viewed from an orientation normal to the plane of the 
undisturbed shear flow ; contours of the streamwise component of the surface shear 
stress, T ~ ;  contours of the azimuthal component of surface shear stress, and 
contours of the surface pressure, p, .  The three contour plots in each of figures 
20(a)-(c) are shown as viewed from the rear of the sphere, looking along the positive 
x-axis back towards the origin. In  figure 20(a) (a = 0) we see that the contours of the 
streamwise component of surface shear form concentric circles, proving that the flow 
is axisymmetric, and thus independent of 6. It then follows that the azimuthal 
component is everywhere zero, and the pressure contours also form concentric circles. 
The position on the surface where 7, changes sign is computed to be 47.5" from the 
rear stagnation point and, as pointed out earlier in table 1, this agrees well with other 
published results. The length of the wake in the velocity plot is determined by 
examining the z-component of the velocity field along the line 7 = 0. The measured 
wake length also agrees closely with published results (table 1) .  

For the case a = 0.2, figure 2 0 ( b ) ,  the stress and pressure contours exhibit 
significant asymmetric behaviour. This asymmetry is evident in the contours for 7, 
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FIGURE 20(b ) .  For caption see page 406. 

and p ,  in figure 20 ( b ) .  Because of the asymmetry, the arc of vanishing r, is no longer 
perfectly circular, as with the a = 0 case. Now, points lying on a vertical line drawn 
through the centre point of the r, contours correspond to points on back side of the 
sphere surface shown in the plot of the velocity field. I n  other words, the vertical line 
bisecting the contour plot corresponds to the semicircular arc denoting the sphere 
surface in the symmetry plane, the curve x 2 + z 2  = 1, z > 0. Using arguments 
pertinent to two-dimensional flow separation, i t  is reasonable to state that the two 
points of vanishing r, lying on the vertical line correspond to the two points of flow 
separation shown in the plot of the velocity field in figure 20 ( b ) .  The reasoning is as 
follows. The two relevant components of the stress tensor, written in the general 
curvilinear components, are 
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FIGURE 20. Plots displaying the velocity field in the symmetry plane, and oontours of the t w o  
components of' the surface shear stress and surface pressurp on the rear half of the sphere at K = 
70 and (a) a = 0,  ( b )  01 = 0.2, and (c) a = 0.4. 

where hi, ht, and hi are the three diagonal components of the metric tensor, and u5, 
u?, and u5 are the curvilinear components of the velocity vector. When (13a) and 
(13b) are evaluated at  the sphere surface ([ = 0), we obtain 

Therefore, in the symmetry plane y = 0 the azimuthal component, r,, is identically 
zero, as demonstrated in the contours for 7,, and it is logical that separation will 
occur when the other component of stress, 7, vanishes. This supposition is born out 
by comparing the points where r, vanishes on the arc in the symmetry plane with the 
sign of u, at the grid points nearest the sphere surface. The rctsults indicate a 
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separation point on the high-velocity surface located 50' from the boundary g = 0 
(the positive z-axis), and a t  a point on the low-velocity surface located 42" from g = 
0. The connection between separation and the magnitudes of rs and 7, a t  points on 
the surface outside of the symmetry plane are, a t  this time, not fully understood. It 
is tempting to  state that  for the flows studied here, separation is directly related to 
the magnitude of rS,  but this would be premature and unsupportable. 

The most startling feature of figure 20 ( b )  is the flow field itself. First, the forward 
stagnation point is no longer located a t  (6, g) = (0, 1 ) ;  it has been shifted upward on 
the high-velocity side of the sphere surface by a few degrees. Also, a closed-streamline 
wake exists on the lower surface at the rear, just as for a = 0, but the recirulating 
eddy on the upper portion of the sphere has disappeared, even though there still 
exists a separation point located 50" from g = 0. Fluid moving around the bottom of 
the sphere continues around the recirculating wake, and up the back of the sphere 
until departing a t  the separation point. This startling result could not have been 
predicted simply by examining the contours for 7, or 7,. 

Finally, for the a = 0.4 case, shown in figure 20(c),  we see that the asymmetry in 
the contours is greatest. The 7, contours show that there is no point on the lower 
surface of the sphere in the symmetry plane where the streamwise component of 
shear vanishes. The velocity field in the symmetry plane emphasizes the unusual 
shape of the r, contours. The low eddy, appearing for a < 0.2, has disappeared, and 
there is now only one separation point in this plane. Fluid elements moving around 
the top of the sphere meet elements that have travelled all the way around the 
bottom and up the back of the sphere. The flow separates from the surface in this 
plane a t  an angle of 53" measured from the y = 0 boundary, and this point coincides 
with the point where rS vanishes. Because the velocity of the undisturbed flow goes 
to zero a t  a distance of 2.5 radii from the sphere centre, two regions of flow reversal 
exist below the sphere. It is interesting that, as a is increased, the locations of the 
forward stagnation point and the rear separation point move closer to one another. 

4. Conclusion 
Numerical solutions have been obtained for steady, linear shear flow past a non- 

translating, non-rotating spherical particle. This flow problem is fully three- 
dimensional, and a powerful finite-volume technique has been employed to solve the 
full NavierStokes equations and the thermal energy equation. A wide range of flow 
parameters has been investigated (0.1 < R < 100, 0.005 < a < 0.4) and the validity 
of the solutions for the entire parameter space has been demonstrated from the 
accuracy tests. 

The dimensional lift force on the particle, F,, is observed to increase monotonically 
with both the Reynolds number and the shear rate, but the dimensionless lift 
coefficient, C,, is approximately constant for fixed a for Reynolds numbers in the 
range 40 d R 6 100. The insensitivity of C, to the Reynolds number indicates that 
the lift on the particle increases in direct proportion to the inertia of the flow. At 
lower values of the Reynolds number (R < lo), it was seen that C, cc R-i. 

The dimensional drag force on the particle, F,, also increases with both R and a, 
but C, decreases monotonically with increasing R for fixed a. Further, for fixed a, the 
drag coefficient, normalized by the drag coefficient for uniform flow, is constant for 
Reynolds numbers in the range 40 d R < 100. Therefore, the drag on a particle a t  
specified values of ci; and U ,  is a constant fraction of the drag on a particle in uniform 
flow a t  the same centreline velocity. 
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For the range of shear rates studied in this work, the rate of heat transfer to the 
particle surface is insensitive to the value of u, suggesting that the average 
temperature gradient a t  the particle surface depends, to lowest order, on the 
centreline velocity U,. The dimensionless heat transfer rate Nu (the Nusselt number) 
rises monotonically with increasing R,  with the dependence on the Reynolds number 
decreasing with R ;  that is, the slope of the curve described by plotting Nu versus R 
decreases as R increases. 

The nature of three-dimensional flow separation is very complex, and the 
relationships between separation and shear stress are not yet fully understood. 
Future work will yield a greater understanding of this phenomena. 
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